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Abstract: The interpretation of residual dipolar couplings in terms of molecular properties of interest is
complicated because of difficulties in separating structural and dynamic effects as well as the need to
estimate alignment tensor parameters a priori. An approach is introduced here that allows many of these
difficulties to be circumvented when data are acquired in multiple alignment media. The method allows the
simultaneous extraction of both structural and dynamic information directly from the residual dipolar coupling
data, in favorable cases even in the complete absence of prior structural knowledge. Application to the
protein ubiquitin indicates greater amplitudes of internal motion than expected from traditional 15N spin
relaxation analysis.

Introduction

The exquisite sensitivity of residual dipolar couplings (RDCs)
to the structure and dynamics of macromolecules in solution,
coupled with the increasing variety of available alignment media,
has expanded the scope of problems that can be effectively
studied by NMR.1-5 However, the interpretation of RDC data
in terms of molecular parameters is complicated by several
factors. Difficulties in separating contributions to RDCs arising
from structural and dynamic properties as well as the need to
estimate structurally dependent alignment tensor parameters
continue to restrict the applicability and to place limits on the
attainable accuracy of RDC-based methods. These concerns are
starting to be addressed,6-11 but RDCs remain primarily tools
for structural refinement, while the dynamics are typically
neglected. The development of methods for the inclusion of the
effects of dynamics is nevertheless a worthwhile objective
because of the expected improvements in accuracy of structural
constraints as well as the prospect of exploiting the sensitivity

of RDCs to motional processes occurring on time scales ranging
from picoseconds to milliseconds.7,9,11,12

We introduce here a novel approach to these ends when data
from multiple alignment media are available. This approach,
referred to as Direct Interpretation of Dipolar Couplings (DIDC),
provides a route whereby both the structural and dynamic
content of the RDC data can be extracted without making any
prior assumptions about alignment tensors. More specifically,
the coupling data are converted directly into mean internuclear
vector orientations and associated generalized order parameters
with high accuracy. The approach also provides a description
of the direction and asymmetry of motions but with much lower
accuracy at present. The final objective is similar to that
described recently9,11 but removes the requirement for a priori
structural information while maintaining the requirement that
RDC measurements be made employing five sufficiently dif-
ferent (i.e., linearly independent) alignment media. Further-
more, the degree to which the requirement for five inde-
pendent media has been met, referred to herein as the complete-
ness of the measured RDC data, can be assessed in most cases
by analysis of the measured data alone. This data analysis
procedure also provides for signal averaging among sets of
RDC measurements acquired in different alignment media,
leading to gains in precision and accuracy of the determined
parameters.

Although there is one recently appearing account,11 it is not
entirely clear how easily the requirement for five independent
media can be met on a routine basis. For cases in which the
measured data fall short of this requirement, a least-squares
based approach is introduced that allows a refined model to be
generated directly from an initial model and the data provided
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without the explicit appearance of terms for alignment tensors.
Use of at least three independent alignment media allows
estimates of generalized order parameters to be obtained in
addition to refined mean internuclear vector orientations. This
delivers lower accuracy and precision than can be attained using
five independent media but should at present be experimentally
feasible for most systems. This provides a useful tool for the
study of intermediate time scale (10-8-10-6 s) motions not
easily accessible to other techniques with atomic resolution. The
new formalism is illustrated with an application to the protein
ubiquitin, employing amide N-H RDC data corresponding to
three independent alignment tensors.

Theoretical Results

The ability to obtain complementary information by acquiring
RDC data in different alignment media13,14 provides the
underlying motivation for this work. If it can be assumed that
the structural and dynamic properties of the macromolecule do
not change when placed in different alignment media, it becomes
possible to in effect obtain a series of snapshots of the molecule
from different perspectives simply by changing the alignment
medium. The presence of motion complicates matters, and thus
we also require that the amplitudes of internal motions are small
enough that the concept of amean structureremains meaningful.
This amounts to requiring that internal motions do not bring
about any large changes in the overall alignment tensor, so that
internal motion and overall motion remain uncorrelated. Under
these assumptions, the question becomes how to reconstruct an
“image” of the structure and dynamics on the basis of a series
of different snapshots obtained using different alignment media.
The first step toward this goal is therefore to express the entire
problem in terms of a single matrix equation:

The matrixD is formed directly from the RDC measurements
and thus has dimensionsN x M, whereN is the number of
experimentally measured residual IS-dipolar couplings and
whereM is the number of different data sets. The interaction
constantK is dependent on the magnetogyric ratios (γI,S) of
the spins and their internuclear distance,rIS. For purposes of
the current work, each data set is comprised of a single set of
amide N-H RDC measurements andK will be presumed
constant. These RDC data sets are optimally recorded using
many different alignment media but can also include couplings
measured in duplicate experiments or under only slightly
different aligning conditions. The matrixesA and B have
dimensions 5 xM andN x 5, respectively. The columns ofA
represent the alignment tensors operative for each of theM data
sets. The rows ofB contain the structural and dynamic infor-
mation that we wish to determine, that is, the mean orientation
and accompanying description of dynamics for each of theN
internuclear vectors for which measurements are available. Each
of the columns ofA and rows ofB contains the five independent
elements of the second rank Cartesian tensor describing the
specific interaction. These five independent tensorial elements

are related to the elements of the relevant 3× 3 Cartesian tensor
as described in eq 2.

These second-rank independent tensorial elements are written
as row vectors to construct the matrixB and as column vectors
in matrix A. The elements of the 3× 3 Cartesian tensors,
corresponding to each of the rows ofB and columns ofA, are
averages over different angular functions and are constructed
in analogy to the order tensor formalism.15

The angle brackets denote that a time average is taken andδmn

represents the Kronecker delta function. The anglesRk andâk

(k ) x, y, z) are depicted in Figure 1 and describe the magnetic
field vector (in thejth alignment medium) and theith inter-
nuclear vector, respectively, relative to an arbitrary molecule-
fixed reference frame. Similar formulations have been described
previously.1,16 The normalization scheme utilized in eq 2
produces vectors of unit length in the absence of time averaging.
Thus, for a rigid molecule, each row of the matrixB will have
a length of one.

Physical Interpretation. If the matrixB can be determined,
then the desired structural and dynamic attributes are readily
extracted. These attributes are the same as described by Meiler
et al.,9 but a different procedure for extracting the information
is described here. First, recall that each of theM columns ofA
corresponds to a specific alignment tensor. For each column of
A, the 3× 3 order tensor can be formed on the basis of the
relationship described by eq 2 and subsequently diagonalized
to determine its principal values and the orientation of its
principal axis system (PAS), expressed relative to some arbitrary
initial molecular frame in terms of Euler angles. An identical
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Figure 1. The anglesRk andâk used to describe the orientation of a specific
internuclear vector and the external magnetic field, respectively, relative
to the axes of common reference frame.
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procedure can be carried out for each of theN rows of the matrix
B, with the resulting principle values and Euler angles carrying
a different physical interpretation. For a specific interactioni,
these resulting Euler angles (Ri, âi, γi) and principal values
comprise the information schematically shown in Figure 2. The
anglesRi andâi correspond to the polar angles of the principal
axis (Z) expressed in the initial arbitrary reference frame.1

Neglecting cases in which the internal motion is highly
anisotropic and of very large amplitude, these two angles
describe the mean orientation of theith interaction vector and
hence correspond to the desiredstructural information. The
corresponding principal values describe amplitudes ofinternal
motion of the ith interaction, extending from ps to ms time
scales. In analogy to the description of the alignment tensor,
these two principal values may be described in terms of the
principal component (Szz,i) along with an asymmetry parameter
(ηi). When present (i.e., whenηi * 0), the specification of
motional anisotropy requires an extra angle (γi) for the descrip-
tion of its principal direction. The generalized order parameters
are related to the principal values viaSi

2 ) Szz,i
2 (1 + (1/3)ηi

2)
but can also be obtained independently of the described
diagonalization procedure by computing, respectively, the
Euclidean norm for each row of the matrixB. A 2-fold
ambiguity remains for each vector because the dipolar interac-
tion is invariant under permutation of the two interacting spins.

Determination of the matrixB is complicated because the
RDC data alone are not sufficient to provide a direct solution.
This can be seen by consideration of eq 1, where one would
like to use the data (D) to determineB but generally will not
have any information aboutA beforehand. Order tensor based
approaches can bypass some of these difficulties by introducing
geometric constraints which relate different interaction vectors
within a putative rigid fragment.7,17 However, for the present
work we seek to obtain independent descriptions of the mean
orientation and motion of individual interaction vectors and thus
will consider methods for obtaining the matrixB directly from
the dataD.

Matrix Algebraic Background. The approach for the
determination of the matrixB will take advantage of the
powerful algebraic matrix methods which exist to deal with
linear problems such as eq 1. A full development of these
techniques can be found in sources dealing with the topic of
generalized inverses.19,20 Only the concepts important for this
work will be discussed here, deliberately placed within the
context of RDC analysis. Indeed, some of the fundamental tools

are already in widespread use for determination of the alignment
tensor by the method of Singular Value Decomposition (SVD).21

We recall that the SVD of a rectangular matrix can be written22

in which UM and VM are column-orthogonal (and column-
normalized) matrixes,WM is a diagonal matrix containing the
nonzero singular values, and the superscript tr is used to denote
the transpose. Provided that there are no degenerate singular
values, this decomposition is unique except for respective
permutations of the elements ofW and the columns ofU and
V. The matrixesUM, VM, andWM will refer herein exclusively
to the matrixes resulting from the SVD of the matrix indicated
by the subscript. The number of nonzero singular values,r,
determines the rank of the matrixM and can never exceed its
smallest dimension. If the rank is equal to the smallest dimension
of the matrix, then the matrix is referred to as full rank or
nonsingular. For applications involving experimental data, the
concept of rank can become ambiguous as a result of measure-
ment errors. In this case, the nonsingularity of the matrix under
consideration is often monitored and reported in the form of a
condition number, which is obtained by computing the ratio of
largest to smallest singular values. A large condition number
may indicate that the matrix is effectively singular for purposes
of further analysis.

It is well known that the determination of an alignment tensor
A using SVD21 provides the best-fit solution forA given some
data (D) and a structural model (B). In typical applications, the
matrix B will correspond to a rigid structure andD andA will
correspond to the alignment medium under consideration and
thus appear as column vectors. The solution to the problem of
determining the best-fit solution forA proceeds by forming the
Moore-Penrose generalized inverse ofB by means of SVD.
The Moore-Penrose generalized inverse ofB, denotedB+, is
constructed as follows:

with the singular valueswk obtained from the individual
elements ofWB. Provided that the internuclear vectors for which
measurements have been made are at least five in number and
are sufficiently independent in orientation, the singular values
wk will be of comparable magnitude and the condition number
will be small. The consequent nonsingularity of the matrixB
will manifest algebraically asB+B ) 1, where1 refers to the
identity matrix. A nonsingular matrixB allows a unique best-
fit alignment tensorAbf (in the least-squares sense) to be
obtained by left multiplication of eq 1 byB+, leading toAbf )

(17) Hus, J. C.; Marion, D.; Blackledge, M.J. Mol. Biol.2000, 298, 927-936.
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(20) Ben-Israel, A.; Greville, T. N. E.Generalized InVerses: Theory and
Applications; John Wiley & Sons: New York, 1974.

(21) Losonczi, J. A.; Andrec, M.; Fischer, M. W. F.; Prestegard, J. H.J. Magn.
Reson.1999, 138, 334-342.

(22) Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.Numerical
recepies in C.; Cambridge University Press: Cambridge, 1992.

Figure 2. Conceptual illustration of the structuralanddynamic information
that can be extracted from residual dipolar couplings. The ellipsoids centered
on the HR and HN atoms represent the nature and extent of motion of CR-
HR and N-HN internuclear bond vectors. The breadths of the ellipsoids
parallel to the bond vectors do not have any significance. Generated using
the program ORTEP-III.18
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(1/K) B+D. If the matrixB were singular, then the solution for
Abf would no longer be unique. The solution must be written
as

where theB+B term on the left specifies that the solution
obtained forA will correspond only to that part which lies within
the range ofBtr, denotedR(Btr). The range of a matrixM , R(M ),
is defined as the vector space encompassing all solution vectors
y for all possible vectorsx subject to the relationshipMx ) y.
The range can be described explicitly by specification of a set
of orthogonal basis vectors that span it. In fact, the SVD of a
matrix (eq 4) provides this information. For example, the range
of Btr is spanned by the columns ofVB that correspond to
nonzero singular values. When the range ofBtr is restricted (i.e.,
R(Btr) * 1), the addition of any vector drawn from the nullspace
of B will produce an equally good solution.19-21 The complete
set of possible solutions forAbf can be written as

wherez is anyvector of dimension 5. The purpose of the (1 -
B+B) term is to extract out the part ofz that is orthogonal to
the range ofBtr (i.e., in the nullspace ofB). It is the significance
of constructs such as (1 - B+B) andB+B that form the basis
for the approach presented here.

These constructs are referred to as orthogonal projectors and
assume an important role in the mathematics underlying linear
least-squares methods.19,20Orthogonal projectors, which are both
idempotent and symmetric, are created by taking the product
of a matrix with its Moore-Penrose inverse, as inB+B. They
function in effect as an operator which, when applied to a vector,
projects out the part of the vector lying within the range of the
left appearing matrix, in this caseB+ (R(B+) ) R(Btr)). The
relevant matrix that projects onto the orthogonal and comple-
mentary subspace is formed by difference with the identity
matrix, as in (1 - B+B). For studies of macromolecules, the
matrix B will usually be full rank, and thus the orthogonal
projectorB+B holds little interest because it will then be equal
to the identity matrix.

Of more interest is the orthogonal projector formed byBB+,
which projects a vector onto the range ofB, R(B). This projector
is anN x N matrix whereN is the number of internuclear vectors
for which measurements have been obtained. Since the matrix
B always has five columns,BB+ will project anN-dimensional
vector onto a subspace spanned by just five basis vectors (of
length N). These five orthogonal basis vectors are readily
obtained from the SVD ofB in the form ofUB (as shown in eq
4). In fact,BB+ depends only on the matrixUB according to

with the number of columns ofUB corresponding to the number
of nonzero singular values (or the rankr) of the matrixB.

The orthogonal projectorBB+ is employed implicitly in the
calculation of RDCs on the basis of the best-fit alignment tensor.
Using the notation of eq 1, a set of predicted RDCs is obtained
by computing

in whichBmd represents the provided structural model andDcalc

andAbf represent the calculated RDCs and best-fit alignment
tensor, respectively. Replacement ofAbf with the expression
for its solution will produce

The orthogonal projectorBmdBmd
+ projects a vector of measured

RDCs onto a corresponding vector of calculated RDCs on the
basis of the structural model provided (Bmd). This formulation
(eq 10) actually corresponds to an approach introduced to
remove the explicit appearance of the alignment tensor during
RDC-based refinement.6,10One can likewise write an expression
for the Q value23 from this perspective:

with | | indicating that the Euclidean norm is computed for the
resultant vector (or matrix if data from multiple alignment media
is considered).

Direct Interpretation of Dipolar Couplings. The objective
of the DIDC method is to obtain the unknown matrixB directly
from the measured RDCs, contained inD. We proceed by
exploiting the relationship between the ranges of the matrixes
B andD. It can be shown that

provided thatAA+ ) 1. In other words, the range ofB is
identical to the range ofD if the matrix A is full rank (i.e., of
rank 5). This is equivalent to the requirement that five
independentalignment media be employed and is therefore a
desirable experimental objective. Once this condition is met,
the RDC data are complete. Further acquisition of RDCs in
additional media will bring further improvements in precision
and accuracy, but no additional complementary information can
be obtained. For now, we consider the implications if complete
RDC data are available and return momentarily to the question
of errors and how one can assess whether eq 12 holds on the
basis of consideration of the matrixD alone.

The fact that a complete set of RDC measurements (i.e.,
acquired using five independent alignment media) will, subject
to measurement errors, provide the range of the matrixB in the
absence of a priori information is an extremely powerful
constraint. This allowsB to be almost completely constructed
on the basis of only the SVD of the data matrixD. The equality
of the ranges ofB andD does not imply thatUB ) UD. These
matrixes are related by a unitary transformation

represented by the 5× 5 unitary matrixT. Considering the SVD
of the matrixB (eq 4) in combination with eq 13 leads to

(23) Cornilescu, G.; Marquardt, J. L.; Ottiger, M.; Bax, A.J. Am. Chem. Soc.
1998, 120, 6836-6837.

B+ BAbf ) (1/K)B+D (6)

Abf ) (1/K)B+D + (1 - B+B)z (7)

BB+ ) UBUtr
B (8)

Dcalc ) KBmdAbf (9)

Dcalc ) BmdB
+

mdD (10)

Q )
|D - BmdB

+
mdD|

|D|
) x∑

i

(Di,meas- Di,calc)
2

∑
i

D2
i,meas

(11)

BB+ ) DD+ (w R(B) ) R(D)) (12)

UB ) UDT, (13)
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with the 5× 5 matrix Λ introduced to represent collectively
the remaining 25 parameters that cannot be deduced from the
RDC data alone. Although we have managed to avoid needing
to know A, the inherent underdetermination of the problem
reemerges here in terms of these unknown 25 parameters. The
missing information does encompass some physically concrete
parameters such as the singular values ofB (WB), but others
(such asT) will contain an arbitrary component. Thus, the
overall significance ofΛ is probably best described simply as
the 5× 5 matrix which produces the solution (B) when provided
with the range-spanning basisUD. Additional data from other
sources could be introduced to restrict possibilities for the matrix
Λ. However, the possibilities forΛ are already severely
restricted by the requirement that the solutionB describes a set
of internuclear vectors belonging to a presumably structured
macromolecule. This suggests that a useful solution might be
obtained by selecting the matrixΛ that minimizes the variation
in generalized order parameters. This can be carried out using
the least-squares procedure

which finds the matrixΛΛtr that produces the best-fit solution
to a molecule with all generalized order parameters equal to 1.
This procedure provides only 15 of the needed parameters,
namely, the matrixesT andWB from eq 14. The remaining 10
parameters correspond to a 5× 5 unitary matrix comprising
any overall rotation of the molecule, which is irrelevant, and a
5 × 5 permutation matrix. This permutation matrix is important
because the proper physical interpretation relies on the assign-
ment of the independent elements of the tensors (eq 2) to each
of the five columns ofB. This permutation matrix can be
determined to within a 4-fold degeneracy by consideration of
the distributions of coefficients occurring in each of the five
columns ofB. These remaining four possibilities arise from
difficulties in assigning specific pairs of columns in the matrix
B to their correct tensorial elements (eq 2). The ambiguous pairs
of tensor elements are (Txz, Tyz) and (Txx - Tyy, Txy). Two of the
possible choices will correspond to the correct and mirror image
solutions while the other two will exhibit global distortions in
the arrangement of vector orientations.

Analysis of the Matrix D. The above-described procedure
can in principle be carried out as long as five sets of RDC
measurements have been made. However, unless the equality
of ranges stated in eq 12 holds, the results will be in part
constructed entirely from random noise. It is therefore desirable
to have a method whereby the validity of eq 12 can be assessed
without knowledge ofB (and henceA). The key to this is the
fact that as a simple consequence of eq 1 the matrixD will be
rank 5 only ifbothA andB are full rank. Although the validity
of eq 12 does not require thatB is full rank, the completeness
of the data can be assessed on the basis of the matrixD alone
only for cases in whichB is full rank. This condition will hold
if the internuclear vectors for which corresponding measure-
ments have been obtained are sufficiently independent such that
the alignment tensorscould be uniquely determined. This will
normally be satisfied easily for macromolecular systems where
large numbers of RDC measurements can be made.

An additional restriction on the matrixD is that it cannot
exceed a rank of 5, which corresponds to the maximum rank
for both matrixesA and B. Therefore, the first step of the
analysis should be to consider carefully the singular values of
the matrixD. If the number of separate data sets acquired (M)
does not exceed the number of RDCs measured in each dataset
(N), then there will beM singular values that result from the
SVD of D, indexed in order of decreasing magnitude. The M-5
least significant singular values correspond to errors in the
measurements. Setting them equal to zero and then reconstruct-
ing the matrixD provides the ability to signal average between
data sets acquired in completely different media. The determi-
nation of whether a complete set of RDCs has been collected
requires consideration of the magnitude of the first five singular
values. The condition number among these five singular values
provides one indication of the level of independence of
measurements. However, the best indication comes from
comparison of the first five singular values with the remaining
singular values arising from the measurement errors. All of the
most significant five singular values (the signal) must be of
distinguishably larger magnitude than the other singular values
(the noise). As the difference in magnitude becomes smaller,
the precision and accuracy of the results will correspondingly
suffer.

Incomplete RDC Data.Although one application has now
been reported which utilizes five independent alignment media,11

this objective remains a challenge. It is therefore useful to
consider how one might proceed in data-deficient cases. Since
the RDC data alone provide an incomplete picture, our approach
will be to supply the missing information on the basis of a rigid
structural model (Bmd). The first step is to use the model (Bmd)
and the data (D) to determine the best-fit alignment tensors (Abf)
in typical fashion. Provided thatBmd is full rank this re-
sults in a unique solution forAbf. These best-fit alignment
tensors along with the data are then used to generate the
corresponding best-fit refined modelBref which satisfies the
equationD ) K Bref Abf. The missing part of the solution for
Bref, which spans the nullspace (ofAbf

tr), is supplied from the
initial model. This procedure is similar to that carried out for
eq 719,20

Consider the right-hand side of the expression. The first term
corresponds to the part refined using the data while the second
part is simply carried over from the initial model. The explicit
appearance of the alignment tensors can be removed and the
equation rearranged to read

This result has the desirable property of producing the best-fit
refined model (Bref) that lies closest to the initial model (Bmd),
as a function of just initial model and data. Moreover, unless
the initial model is of extremely poor quality, eq 17 will produce
an exact solution (i.e., with aQ value) 0) for Bref.

The most notable feature of this refinement procedure is that
the dynamic properties are refined simultaneously along with
the structural properties. For many cases this will be a desirable
situation, but there are some associated complications with the
resulting description of dynamics. Because of the incomplete

B ) UDTWBVtr
B ) UDΛ (14)

|Diag{UDΛΛtrUD
tr} - 1(N)|min (15)

Bref ) (1/K)DA+
bf + Bmd(1 - AbfA

+
bf) (16)

Bref ) Bmd + D(B+
mdD)+ - BmdB

+
mdD(B+

mdD)+

(17)
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nature of the data, we will not consider the description of
motional asymmetry and focus only on the estimation of
generalized order parameters. The simplest method for estimat-
ing generalized order parameters is to compute them directly
from the rows of the refined modelBref according to

in which | |i denotes the Euclidean norm of the row corre-
sponding to theith interaction. The problem with computing
the generalized order parameters directly fromBref according
to eq 18 is that the extent of motion will be underestimated
because it is constructed in part from the initial modelBmd,
which is likely to be rigid. This can produce particularly large
distortions for very mobile regions, for which the description
of motional amplitudes may be of significant interest. It would
therefore be useful to exclude the contribution from the initial
model when estimating generalized order parameters. By
referring to the result shown in eq 17, we propose the following
expression for the estimation of generalized order parameters:

As before,| |i refers to the Euclidean norm of theith row of
the resultant matrix. In effect, each order parameterSi is
estimated on a row-by-row basis from the ratio of the norms of
the new, refined partD(B+

mdD)+ to the old part being discarded,
BmdB+

mdD(B+
mdD)+, respectively. This simple approach re-

quires that the provided model (Bmd in eq 19) represents a rigid
model. Although this scheme provides a less biased estimate
of order parameters, it also carries the disadvantage of being
based on a ratio, which leads to occasionally unstable behavior
for specific interactions.

The order parameters that result from an RDC-based analysis
are inherently relative in nature. As in the spin relaxation
analysis, part of the problem arises because of uncertainties in
the magnitude of the dipolar interaction constant.24 However,
an additional level of uncertainty enters in because of the
inability to distinguish between the magnitude of overall
alignment and internal motions in an absolute manner.9,11,12This
is underscored by eq 17, which does not even contain a term
for the dipolar interaction constant. The refined matrixBref will
exhibit raw order parameters that produce an average value of
1.0. Typically, the order parameters must be scaled in some
way, for example, by requiring that no order parameter can
exceed a value of 1.

Materials and Methods

Acquisition of RDC Data. 15N labeled ubiquitin (VLI Research)
and a suspension of purple membrane (PM) particles (Symbiotech) were
purchased and used without further purification. An initial isotropic
sample of ubiquitin (0.5 mM) was prepared to contain 30 mM phosphate
(pH 7.2), 0.05% NaN3, and 6% D2O. Following acquisition of isotropic
reference data, the sample was modified to contain 2.0 mg/mL PM.25,26

Four sets of1JNH couplings were measured after successive additions
of NaCl (20, 40, 60, and 80 mM). The general procedure was repeated

starting with a more concentrated isotropic ubiquitin sample (1 mM)
under identical buffer and pH conditions. A series of three additional
measurements of1JNH couplings were carried out under the following
PM:NaCl conditions: (1.5 mg/mL: 20 mM), (8.0 mg/mL: 90 mM),
and (8.0 mg/mL: 250 mM).

NMR experiments were carried out at a temperature of 37°C on a
Bruker DRX spectrometer operating a1H resonance frequency of 600
MHz and equipped with a broad-band triple resonance probe (TBI)
with three orthogonal gradient coils. Amide N-H RDCs were obtained
by difference between1JNH couplings measured under isotropic and
aligned conditions. All1JNH coupling measurements were performed
using the HSQC-PEC (HSQC with phase-encoded couplings)27,28

experiment. This experiment utilizes a constant time period for N-H
coupling evolution, with coupling information encoded in the resonance
intensities of a pair of resulting15N-1H correlation spectra, which are
created by postacquisition data shuffling. These experiments are in turn
acquired in pairs, differing only in the constant time period employed,
to reduce systematic errors.28 The measured coupling is taken to be
the average of values obtained from the complementary pair of
experiments. Experiments on samples with low PM concentrations (<)
2.0 mg/mL PM) were acquired using constant time periods set to 64.516
and 69.892 ms. Because of significantly enhanced relaxation, the
samples with high PM concentration required the use of shorter constant
time periods (32.258 and 37.634 ms). Total experimental acquisition
times (for each complementary pair of experiments) were∼8 h for the
2.0 mg/mL PM samples and∼25 h for the 1.5 and 8.0 mg/mL PM
samples. Data processing was carried out using NMRPipe software.29

Analysis of Synthetic Data.Starting from a set of synthetic or
measured RDCs, all further analysis was carried out using home-written
software. According to eq 1, synthetic RDC data was generated on the
basis of a provided set of alignment tensorsA and a matrixB describing
the structure and dynamics of a set of internuclear vectors. The
alignment tensors were generated randomly with the magnitude
restricted such that the maximum magnitude of the RDCs produced
would range between 5 and 25 Hz. The mean orientations forB were
taken to correspond to the 73 amide N-H internuclear vectors of a
solid-state structure of ubiquitin (1UBQ). These vectors were extracted
in terms of the polar angles,âi and Ri, describing their orientation
relative to the native coordinate axes. Dynamics were introduced
separately for each internuclear vector by random generation of values
for the generalized order parameter (Si), as well as parameters describing
the direction (γi) and asymmetry (ηi) of motional averaging. These five
parameters were used to construct a diagonal order tensor, based onSi

andηi, as well as a 3× 3 unitary transformation matrix based on the
other three parameters (Ri, âi, γi). The transformation matrix was used
to rotate each diagonal order tensor into a common molecular frame
before conversion to independent tensor elements according to eq 2.
Normally distributed random noise was added to the synthetic data as
necessary. When required, initial imperfect model structures were
generated from the “perfect” mean structure by the addition of random
angular displacements for each vector. The amplitudes of the angular
displacements were generated from a normal distribution and were
carried out by rotation of the specific internuclear vector about a
randomly selected perpendicular rotation axis.

Results

The proposed methods are illustrated using synthetic data in
addition to an experimental application to the protein ubiquitin
employing data that collectively represent three independent
alignment tensors. The simulations are intended to provide some

(24) Case, D. A.J. Biomol. NMR1999, 15, 95-102.
(25) Sass, J.; Cordier, F.; Hoffmann, A.; Cousin, A.; Omichinski, J. G.; Lowen,

H.; Grzesiek, S.J. Am. Chem. Soc.1999, 121, 2047-2055.
(26) Koenig, B. W.; Hu, J. S.; Ottiger, M.; Bose, S.; Hendler, R. W.; Bax, A.

J. Am. Chem. Soc.1999, 121, 1385-1386.

(27) Tolman, J. R.; Prestegard, J. H.J. Magn. Reson., Ser. B1996, 112, 245-
252.

(28) Cutting, B.; Tolman, J. R.; Nanchen, S.; Bodenhausen, G.J. Biomol. NMR
2002, 23, 195-200.

(29) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A.J.
Biomol. NMR1995, 6, 277-293.
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general insights into the effects of experimental noise and the
accuracy of initial model structures (when needed) on the
precision and accuracy of extracted structural and dynamic
parameters. These factors are explored using synthetic amide
N-H RDC data generated from two hypothetically perfect
models based on a set of ubiquitin coordinates (1UBQ). Both
models have the same mean structure, but one is completely
rigid while the other executes internal motions. The dynamic
model exhibits values ofSranging between 0.7 and 1.0 for 90%
of amide N-H vectors while the other 10% are highly mobile
with S< 0.5. These two models, in combination with randomly
generated alignment tensors, were used to create synthetic data
sets that mimic the acquisition of RDC data in multiple
alignment media.

Simulations Using Complete Data.The ability to extract
structural and dynamic parameters in the absence of a priori
information was tested using synthetic RDC data corresponding
to the measurement of 73 couplings in 10 randomly generated
alignment tensors. Several data matrixesD of dimension 73×
10 were thus constructed containing variable levels of added
random error. The independence of the data was verified on
the basis of the SVD of the synthetic matrixesD. Shown in
Figure 3 are the singular values resulting from such an analysis.
As expected, singular values 6-10 are nearly constant and
correlate in magnitude with the level of added errors. Even with
large random errors, for example, withσ(error) ) 1.5 Hz, the
5th (and smallest) singular value remains distinct from the noise
by an approximate factor of 3. A minimization procedure to
find ΛΛtr was carried out according to eq 15 for each of the
matrixesUD (73 × 5) resulting from the SVD analysis. This
allowed the matrixesUDTWB to be constructed on the basis of
the SVD of ΛΛtr. The final 10 parameters were obtained by
finding the 5× 5 unitary transformation matrix producing the
best fit to the matrixB generated from the solid-state structural
coordinates of ubiquitin. This procedure produces the best-fit
superposition of vector orientations to facilitate comparison.

Results are summarized in Table 1 for both dynamic and rigid
protein cases at different levels of experimental error. For a truly
rigid protein and perfect data, this method will produce perfect
results. Otherwise, resulting accuracy and precision correlate
with the quality of the data. The vector orientations of the protein
core are obtained to extremely high accuracy (<5° RMSD) for
all cases considered here. The results for the dynamic protein
with large experimental errors present illustrate a complication
that can occur for highly mobile regions. This is reflected in
the large difference between RMSDs reported with and without
the inclusion of highly mobile vectors. A closer examination

indicates that the difference occurs because of highly anisotropic
motions of two vectors, leading to confusion in the selection of
the principal axisZ, and hence angular errors of nearly 90
degrees are recorded for each of these two cases.

The generalized order parameters are also estimated to very
good precision and accuracy. The resulting correlation between
true and apparent generalized order parameters is shown in
Figure 4 for perfect data and with added random errors of
σ(error) ) 1.0 Hz. Since absolute values of the apparent gen-
eralized order parameters cannot be established with certainty,
the results shown are scaled to exhibit a maximum value of
1.0. In Table 1, the RMSDs for the order parameters are reported
in scaled (best-fit) and unscaled (Si (max)) 1) forms to facilitate
the evaluation of overall precision and accuracy. Notably, the
estimated order parameters for the rigid protein are very closely
clustered with the exception of a single outlier, which dominates
the reported statistics. This situation presumably arises because
of the relatively flat energy landscape encountered at the end
of the minimization procedure and has not been observed for
any dynamic case simulated. Despite these minor anomalies, it
is apparent that results of high quality can be obtained.

In comparison with the results for generalized order param-
eters, the ability to estimate the parameters describing the
anisotropy of motion was rather poor. Using perfect data, the
results obtained for the motional asymmetry parameterη are
illustrated in Figure 5 for the dynamic model. Even in this
idealized case, the accuracy is rather low and effectively restricts

Figure 3. Singular values of the matrixD (of dimension 73× 10) formed
from 10 synthetic RDC datasets. It is apparent that the requirement for
five independent alignment tensors is met. Singular values are plotted for
three different levels of added random errors:σ (error) ) 0.5 Hz (x), σ
(error) ) 1.0 Hz (+), σ (error) ) 1.5 Hz (open circles).

Table 1. Results of Simulations Using Complete RDC Data

σ (error)a ∆rb ∆Sc,d ∆S (scaled)c,e

rigid 0 0 0 0 (1.0)
0.5 1.1 0.061 0.018 (1.062)
1.0 2.2 0.117 0.035 (1.126)
1.5 3.4 0.165 0.052 (1.187)

dynamic 0 1.3 (1.4) 0.032 0.032 (0.994)
0.5 1.8 (2.6) 0.037 0.037 (1.009)
1.0 3.2 (9.6) 0.051 0.048 (1.020)
1.5 4.7 (14.2) 0.069 0.061 (1.040)

a Standard deviation of synthetic errors in Hz.b RMSD from true mean
vector orientations (°). Calculation includes only residues withSi > 0.5
(calculation including all residues).c RMSD from true generalized order
parameters.d Apparent generalized order parameters are only scaled such
that the largest value,Si (max) ) 1. e The apparent generalized order
parameters are scaled by best fit to the true values. The best-fit scaling
parametera (in parentheses) is obtained by minimization ofSi (true) )
a*Si(apparent) over all residues.

Figure 4. Comparison of true versus apparent generalized order parameters
obtained using a complete set of synthetic RDC data for 73 residues and in
the absence of a priori information. The comparison is shown for the case
of perfect data (open circles) and with random errors added withσ (error)
) 1.0 Hz (filled squares). The correlation coefficients are 0.986 and 0.968,
respectively.
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the interpretation to qualitative assessments of either high or
low asymmetry. In light of these initial results, the extraction
of anisotropic motional parameters (η andγ) was not considered
further within the context of this work.

Refinement Protocol for Incomplete Data.If the acquired
RDC data is not complete, that is, the matrixD is less than
rank 5, then the analysis must proceed on the basis of an initial
model structure. Some tools for refinement were introduced in
the theoretical section, but the optimal protocol for their use
will depend on the extent of mobility of the molecule as well
as the objectives of the investigator. For the present, we focus
on exploring a simple yet robust refinement procedure. A single
application of eq 17 will generate a refined dynamic model that
produces perfect agreement between measured and calculated
RDC data. However, this simple approach suffers from reduced
accuracy of extracted parameters because it starts from a rigid
model. Unless one is certain that the molecule is in reality very
rigid, it would be more desirable to pre-estimate order param-
eters and then modify the starting model to reflect these
estimates. A simple two-step refinement procedure is therefore
proposed to accomplish this. In the first step, generalized order
parameters are calculated directly from the matrixBref resulting
from application of eq 17. These generalized order parameters
are obtained simply by computing the Euclidean norm for each
row of Bref according to eq 18. Although this will underestimate
motion, it has the advantage of being very resistant to the
production of outliers. These initial estimates ofSi are then used
to scale the initial rigid model by multiplying each row ofBmd

by its respective estimatedSi. This implicitly assumes axially
symmetric motions, but the deviations are expected to be small
and, moreover, well beyond the discriminating power of
incomplete RDC data. The new “dynamic” initial model created
by this scaling procedure is then passed through eq 17 a second
time, followed by renormalization of theN rows ofBref back to
1. This is the structurally refined model, containing no informa-
tion about dynamics. The final estimates for the generalized
order parameters are obtained via eq 19 using thisrigid refined
model. The final refined model can then be constructed by
multiplying each row by the respective final estimates for the
generalized order parameters. Although this procedure will not
produce perfect agreement between measured and calculated
RDCs, extensive simulations indicate that, unless the molecule
is in reality very rigid, this two-step protocol will produce more
accurate mean vector orientations and order parameters relative
to a single-step application of the prescription given in eq 17.

Simulations Using Rank 3 Data.As a test of the proposed
two-step refinement protocol, synthetic RDC data were gener-
ated corresponding to 73 RDC measurements in 10 different
alignment media. After random generation of the first three
alignment tensors, the remaining seven were obtained on the
basis of the first three by constructing linear combinations with
random coefficients. This ensures that the resulting synthetic
data is of rank 3, as can be seen from the singular values plotted
in Figure 6. In this case, the 4th and higher singular values are
set to zero before reconstructing the data matrixD. The
described two-step refinement protocol was then carried out
using starting models of variable quality and with different levels
of random error in the original data.Q values23 were computed
(eq 11) at several intermediate steps to track the improvement
in agreement between the data and the model. TheseQ values
are reported along with a summary of results in Table 2. As
expected, the method produces perfect results in the event that
the protein is rigid, and a perfect model and perfect data are
available. Unless an extraordinarily accurate mean structure is
available to start, the protocol produces refined mean orienta-
tions that exhibit rather consistent gains in accuracy (of
approximately 30%) with only a small dependence on the quality
of the structural model or data. Consideration on a residue-by-
residue basis indicates that while the level of improvement is
very inconsistent between residues, only very rarely do any
individual vectors decrease in accuracy. These isolated cases
arise because of the remaining presence of multiple minima for
orientational solutions when three alignment media are em-
ployed. This explains the huge angular errors observed for a
couple of residues when refining the starting model with an
RMSD of 16.3° (see Table 2).

In contrast to its performance for structural refinement, the
ability of the protocol to estimate generalized order parameters
depends rather strongly on the quality of the initial model and
data provided. To facilitate comparison of results in Table 2,
all reported RMSDs correspond to the agreement between the
true and apparent values forS after determination of a best-fit
scaling factor. Figure 7 illustrates the level of precision and
accuracy obtained under two different starting conditions, with
the values forS (apparent) scaled such that the maximum was
equal to 1.0. Provided with perfect data and a rigid model with
the correct mean vector orientations can allow values ofS to
be estimated with rather good precision and accuracy. From

Figure 5. Comparison of true versus apparent values for the motional
asymmetry parameterη obtained using a complete set of RDC data and in
the absence of a priori information. The comparison is shown for the case
of perfect data.

Figure 6. Singular values of the matrixD obtained in some data deficient
cases considered in the text (synthetic and experimental). The singular values
resulting from synthetic data (data matrixD of dimension 73× 10) are
shown for added random errors ofσ (error)) 0.5 Hz (open triangles) and
σ (error) ) 1.0 Hz (filled circles). The singular values of the data (matrix
D of dimension 61× 9) employed for the experimental application to
ubiquitin are indicated with x’s.
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Table 2 it can be seen that, with good data and a high-quality
model, results can be obtained that are comparable to this
idealized case. However, with the not unrealistic case ofσ (error)
) 1.0 Hz and a 10.9° RMSD model, the quality of the results
have already been noticeably altered. While the overall distribu-
tion of order parameters is still useful, precision and accuracy
are considerably diminished and there are inevitably outliers
well outside of the general precision level applicable for the
majority of interaction vectors. Interestingly, the occurrence of
a few outliers is in itself fairly reproducible and apparently
depends strongly on the quality of the model structure provided
and the specific alignment tensor configuration. This suggests
that it may be possible to identify those vectors that are
particularly unstable to estimation of generalized order parameter
by this protocol. This is being investigated further.

Application to Ubiquitin. Amide N-H RDC data were
measured for ubiquitin dissolved in purple membrane (PM)
media,25,26under different PM and salt concentrations. The seven
data sets acquired in this manner were supplemented with two
data sets from the literature,30 acquired in charged and uncharged
bicelle media. From these data, a matrixD was constructed of
dimension 61× 9, with its singular values shown in Figure 6.
Clearly, these data collectively represent at least three indepen-
dent alignment tensors. Although the fourth singular value is
above the noise, it was not included in the analysis because of
concerns about whether it was significant given that the PM
data sets are not very independent (see Supporting Information).
In experimental situations, it is possible that a singular value,
like the fourth one here, could correspond to the existence of
systematic errors or even reflect variations in the structure or
dynamics of the protein between different media. This presents
some interesting implications not further explored here.

After zeroing the six least significant singular values to reduce
errors, the described two-step protocol was applied using three
different starting models, taken from available solid state31,32

(1UBQ and 1UBI) and solution state23 (1D3Z, model 1)
coordinates. Refinement statistics are reported in Table 3. On
the basis of the statistics for the refinement of mean vector
orientations, we might infer that the NMR structure 1D3Z is in
fact closer to the actual structure in solution. However, bicelle
data used here was also used in refinement of that particular
structure. Nevertheless, a consideration of changes in vector
orientations on a residue-by-residue basis indicates that the larger
RMSDs obtained for the solid-state structures upon refinement
arise predominantly from internuclear vectors lying within loop

(30) Ottiger, M.; Bax, A.J. Am. Chem. Soc.1998, 120, 12334-12341.
(31) Vijaykumar, S.; Bugg, C. E.; Cook, W. J.J. Mol. Biol. 1987, 194, 531-

544.
(32) Ramage, R.; Green, J.; Muir, T. W.; Ogunjobi, O. M.; Love, S.; Shaw, K.

Biochem. J.1994, 299, 151-158.

Table 2. Results of Simulations Using Incomplete RDC Data of Rank 3

∆r (init)a σ (error)b ∆r (refined)c,d ∆S (apparent )d,e S scalingf Q (init)g Q (init + S)h Q (ref)g Q (ref + S)h

rigid 0 0 0 0 1.000 0 0 0 0
0.5 0.8 0.031 1.104 0.031 0.034 0.029 0.025
1.0 1.6 0.061 1.209 0.063 0.067 0.057 0.049

5.4 0 3.3 0.043 1.126 0.169 0.157 0.065 0.049
0.5 3.5 0.051 1.152 0.169 0.157 0.071 0.055
1.0 3.8 0.072 1.194 0.175 0.166 0.087 0.069

10.9 0 6.8 0.080 1.232 0.308 0.283 0.122 0.091
0.5 6.9 0.082 1.188 0.307 0.280 0.125 0.093
1.0 7.2 0.094 1.204 0.308 0.282 0.134 0.101

dynamic 0 0 0.9 (3.3) 0.042 (0.060) 1.001 0.213 0.074 0.160 0.057
0.5 1.3 (3.4) 0.054 (0.074) 1.038 0.215 0.084 0.162 0.065
1.0 2.0 (3.9) 0.077 (0.096) 1.068 0.222 0.109 0.170 0.082

5.4 0 3.5 (4.6) 0.053 (0.066) 1.012 0.260 0.163 0.177 0.075
0.5 3.7 (4.8) 0.059 (0.075) 1.032 0.260 0.163 0.179 0.081
1.0 4.1 (5.2) 0.079 (0.094) 1.063 0.264 0.175 0.187 0.096

10.9 0 6.7 (7.4) 0.076 (0.082) 1.073 0.359 0.279 0.209 0.104
0.5 6.9 (7.6) 0.078 (0.087) 1.041 0.357 0.275 0.211 0.108
1.0 7.2 (7.9) 0.091 (0.100) 1.070 0.359 0.279 0.217 0.118

16.3 0 9.8j(17.5) 0.102 (0.104) 1.137 0.454 0.395 0.329 0.263
0.5 10.2i(14.5) 0.102 (0.104) 1.113 0.452 0.393 0.298 0.229
1.0 10.4i(14.8) 0.113 (0.115) 1.119 0.452 0.394 0.302 0.231

a RMSD of mean vector orientations for the initial model from their true orientations.b Standard deviation of synthetic errors in Hz.c RMSD of mean
vector orientations for the final refined model from their true orientations.dCalculation includes only residues withSi > 0.5 (calculation including all
residues).e RMSD from true generalized order parameters after best-fit scaling of apparent values ofSi. f Best-fit scaling parametera is obtained by minimization
of Si(true) ) a*Si(apparent) over all residues.g Q value for specified rigid model (all rows of the corresponding matrixB have a norm of 1).h Q value for
the specified model scaled by final estimates for generalized order parameters (each row of the corresponding matrixB is multiplied by the relevant value
for Si). i One additional residue was excluded on the basis of a very large departure (>45°) from the initial orientation upon refinement.j As for i, but for
two residues.

Figure 7. Comparison of true versus apparent generalized order parameters
obtained using synthetic RDC data for 73 residues and corresponding to
three independent alignment tensors (rank 3 data). In this case, an initial
starting model is required. The open circles correspond to results using
perfect data and a model with perfect mean orientations. Results using data
with added errors (σ (error) ) 1.0 Hz) and an imperfect starting model
(10.9° RMSD from true mean vector orientations) are indicated with the
filled squares. The correlation coefficients are 0.962 and 0.871 for perfect
and imperfect data, respectively.
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regions. This remains consistent with a structure in solution that
more closely corresponds to the NMR derived structure.

The results obtained for two of the initial models (1D3Z and
1UBQ) are illustrated in Figure 8. The bottom panel shows that,
upon refinement, the two models have converged closer to a
common structure, as one would expect. The top panel sum-
marizes the squared generalized order parameters obtained with
either of the two structures used as the initial model compared
with values obtained from15N spin relaxation studies.33 Similar
results are obtained using either of the two starting models with
results for residues 11, 17, and 32 standing out as probable
outliers. Even with a generous accounting for limitations in
precision, the results indicate the existence of additional motions
occurring on time scales not probed by15N spin relaxation
studies. This is further supported by the overall agreement of
the present results with another, recently appearing RDC-based

analysis of ubiquitin.11 That study, which utilized more data
than the one described here, also found squared generalized
order parameters as low as 0.5 within the structured region of
ubiquitin.

Discussion and Conclusion

The foundation for a new approach to the interpretation of
multi-alignment RDC data in terms of the structural and dynamic
properties of macromolecules has been presented. This approach,
called DIDC, rests on a theoretical basis in which the RDC data
are used in a collective manner to directly generate the desired
structural and dynamic parameters, either de novo or starting
from an initial structural model. The applicability of the
methodology is limited primarily by the assumption that internal
motions are uncorrelated with overall alignment and that
different alignment media can be employed without causing
changes in the structure or dynamics of the macromolecule.
While it is difficult at present to fully assess the validity of
these assumptions generally for macromolecules, these limita-
tions are common to current methods for RDC-based analysis.
It is anticipated that additional light will be shed on these issues
as the RDC methodology evolves. Nevertheless, within these
assumptions, there are some significant advantages associated
with this new approach. The ability to reduce random errors in
measured RDCs by means of an SVD of the data is generally
applicable and can be utilized in any application where multiple
sets of data have been acquired. The approach also does not
require the explicit specification of alignment tensors. If desired,
the best-fit alignment tensors can be computed at the end of
the analysis. Most significantly, the formalism provides for the
unified study of structural and dynamic properties. Not only
does this allow normally unavailable dynamic information to
be extracted but also should provide improvements in structural
accuracy because the dynamics are at least partially accounted
for. In the most favorable cases, that is, when “complete” RDC
data are available corresponding to five independent alignment
media, it is expected that generalized order parameters and mean
internuclear vector orientations can be extracted de novo from
the data with high accuracy.

It is probably reasonable to expect that future advances in
experimental techniques will eventually make the acquisition
of complete sets of RDC data a routine matter. However, at
present this objective remains demanding. The results from the
simulations and the experimental application to ubiquitin suggest
that useful dynamic information in the form of generalized order
parameters can still be obtained provided that a structure and
RDC data acquired in at least three independent alignment media
are available. This reduced requirement should now be experi-
mentally feasible for a wide range of systems. This opens up
the exciting prospect of exploring the nanosecond to microsec-
ond motional time scales using these new techniques. The results
of simulations underscore the importance of using accurate
structural coordinates and accurate RDC data to obtain optimal
precision of estimated order parameters. Nevertheless, these
demands can be satisfied reasonably well provided that a high-
resolution structure from the PDB is available and RDC data
can be acquired with reasonable precision.

The results for ubiquitin are consistent with this assessment.
The singular values resulting from the SVD of the ubiquitin
data (Figure 6) indicate that the RDC data are of high quality,

(33) Tjandra, N.; Feller, S. E.; Pastor, R. W.; Bax, A.J. Am. Chem. Soc.1995,
117, 12562-12566.

Table 3. Statistics from Refinement of Different Models of
Ubiquitin

modela ∆rb Q (init)c Q (init + S)d Q (ref)c Q (ref + S)d

1D3Z 3.9 (6.0) 0.240 0.139 0.112 0.059
1UBQ 9.0 (9.3) 0.251 0.216 0.132 0.100
1UBI 9.0 (9.2) 0.263 0.225 0.139 0.096

a PDB entry of starting model employed.b RMSD of refined mean vector
orientations relative to the initial model (°). Calculation includes only
residues withSi > 0.5 (calculation including all residues).c Q value for
specified rigid model (all rows of the corresponding matrixB have a norm
of 1). d Q value for the specified model scaled by final estimates for
generalized order parameters (each row of the corresponding matrixB is
multiplied by the relevant value forSi).

Figure 8. Top: “Dipolar” order parameters squared,SNH
2, obtained using

two different initial rigid structures of ubiquitin. The values shown
correspond to 61 of the 73 nonproline residues in ubiquitin, for which
corresponding RDC measurements were available in all nine media
considered. Filled circles: starting with a solution-state NMR structure
(1D3Z, model 1).23 Open squares: starting with a solid-state X-ray structure
(1UBQ).31 For comparison, theSNH

2 values derived from15N relaxation
rates by Tjandra et al.33 are indicated by a dotted line. All three sets of
SNH

2 have been scaled to exhibit a maximum value of 1. Bottom:
Comparison of the deviation∆ω of amide NH internuclear vector
orientations between the NMR and X-ray structures employed as starting
structures. Dotted line: comparison before refinement. Solid line and filled
triangles: comparison after the independent refinement of both structures
using RDC data only.
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indeed considerably better than any of the noise-containing
synthetic data sets generated. It is more difficult to assess the
accuracy of the structures used as initial models. However, the
agreement between the solution and solid-state structure to begin
with and the improvement upon refinement (to<5° RMSD for
the protein core), along with the similarity in extracted order
parameters (Figure 8), all point toward a level of accuracy of
approximately 5-10° RMSD for the initial models used. Despite
the high-quality structural information and RDC data employed
for the application to ubiquitin, a relevant concern is the
reliability of results indicating substantially greater amplitudes
of internal motion than expected on the basis of15N spin
relaxation studies. The dearth of outside information on this
question, with the exception of a couple of studies,7,11 in
combination with the introductory nature of the formalism
presented here precludes a firm conclusion. Nevertheless, the
analytical tools introduced here provide least-squares best-fit
solutions based on the information provided. The fact that the
overall variation in generalized order parameters estimated for
ubiquitin exceeds by a considerable margin even more pes-
simistic assessments of precision is thus very significant. While
subject to the validity of some underlying assumptions, the
results obtained here are clearly not consistent with a model of
ubiquitin in line with 15N spin relaxation derived order
parameters. It is anticipated that further studies will allow further
clarification.

The account presented here has been concerned with intro-
ducing the basic formalism along with some illustrations of its
application. There are many aspects that remain uninvestigated.
Although not explored in the current work, a comparison ofQ
values for the initial, intermediate, and final structures provide
some indication concerning the overall extent of dynamics
present. This sort of information might be used to improve the
performance of the refinement protocol in data deficient cases.
Furthermore, while the methodology was only illustrated in the

context of RDC data acquired in a minimum of three alignment
tensors, the approach is in principle applicable to situations in
which less data is available. In particular, the removal of terms
for alignment tensors could lead to improvements in the
convergence properties during simulated annealing refinement,
similar to the approach of Moltke et al.6,10 The question is how
much data is required at minimum to meaningfully support the
simultaneous refinement of dynamics along with structure.

Even in the case of complete RDC data, the interpretation in
terms of molecular parameters is fundamentally underdetermined
(by 25 parameters). At present, it appears that the uncertainty
in these parameters is sufficient to significantly inhibit the
reliable description of motional asymmetry. Likely, the use of
additional constraints will enable the extraction of parameters
with improved accuracy and precision. This includes the addition
of RDC data corresponding to different interactions. Indeed,
the formalism is well suited to the unified analysis of data from
multiple different dipolar interactions. By choosing interactions
(such as CR-C′) with an effectively fixed geometric relationship
to the N-H interaction vectors examined here, additional angu-
lar constraints may be obtained that could lift some of the
ambiguities. Along these lines, this approach might be extended
to allow a backbone fold accompanied by a description of dy-
namics to be constructed with high accuracy.
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